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1 .  INTRODUCTION 

The return of manned and unmanned satellites and space vehicles to the earth's 

surface with their structure intact i s  one of the most important problems in astronautics 

today. During re-entry of a space vehicle through the atmosphere, extremely high 

velocities are encountered. For instance, at return from a lunar mission nearly para- 

bolic velocity (1 1.3 kmlsec), corresponding to about Mach number 35, i s  reached. 

Strong heating, starting behind the shockwave, occurs particular1 y in the stagnation 

point region of the re-entering space vehicle (in case of parabolic velocity up to a 

maximum of 1l,00O0K at 60 km altitude). Already at much smaller velocities, namely 

for f l ight above Mach number 3, air no longer behaves as a perfect gas, and with 

increasing Mach number, molecular vibration, dissociation, electronic excitation, 

ionization, and ultimately complete plasma formation progressively take pLace. These 

phenomena wi l l  change considerably the chemical composition of the air and this 

change wi l l  extend along the body. 

Since in  most hypersonic applications, the flow has insufficient time to obtain ther- 

modynamic equilibrium, there wi l l  generally be non-equilibrium flow in  the shock layer. 

There also exist two I imiting cases. Depending on the specific free stream velocity, 

density, temperature, atmospheric composition, and the absolute size of the body, the 

flow may be either almost frozen, or the flow may reach very nearly equilibrium. 

The calculation of hypersonic tIow tieids obvious: y Icquiit; th2:mdyncmir rind 

chemical kinetic relations which include the above mentioned real gas effects and the 

intermediate reactions and products. Since rigorous mathematical expression of such 

relations would be very complex, this paper uses a simplified air model, formerly infro- 

duced and used by the author (Ref. 1,2,3), consisting of oxygen and nitrogen only. 

For specific flow calculations so far, we further restrict the application to the tempera- 

ture range in which only oxygen dissociation occurs. Even with these thermodynamic 

simplifications the computational efforts required to calculate flow around blunt or 

pointed bodies are very extensive. The use of the simplified air model, however, enables 

us to show the basic features of equilibrium, non-equilibrium, and frozen flow. 
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2. NON-EQUILIBRIUM FLOW, HYPERSONIC FLOW FIELDS, 
AND FLIGHT REGIONS 

Description of  Equilibrium Flow, Non-Equilibrium Flow, and Frozen Flow 2.1 

Before we can discuss non-equilibrium, equilibrium, and frozen flow, we 

have to define thermodynamic equilibrium of a gas at rest. A gas at rest is,  by defi- 

nition, i n  thermodynamic equilibrium, i f  Q particular volume of the gas has sufficient, 

or better infinite, time to bring al l  i t s  internai modes of energy in equilibrium with the 

translational energy of  the molecular motion. 

molecular vibration, dissociation, electronic excitation, and ionization. 

to assume i n  our calculations that the rotational energy of  the gas molecules i s  always 

i n  equilibrium with the translational energy, 

For our consideration those modes are 

It i s  justified 

Now considering flow processes of a gas, i t  i s  obvious that equilibrium flow 

i s  only one limiting cased namely when the changes of the state of the gas 

flowing along Q streamline are so slow that at  any point equilibrium i s  obtained, or 

stated more exactly, equilibrium i s  very closely approached. A t  hypersonic velocities, 

the time available is, in general, too short for the gas particles which are undergoing 

rapid density, temperature, and composition changes to reach thermodynamic equil i- 

brium. Hence, in general, we have non-equilibrium flow. The degree o f  molecular 

vibmtion, i61e deyiee v f  dIszcIzfkn !rhem;cnS composition), and the degree of  ioni- 

zation w i l l  s t i l i  change from point to point along the streamline but w i l l  not reach 

thermodynamic equilibrium a t  any point. 

-. 

Another limiting case occuas when the gas moves so fast that the internal 

energy modes have no time bo follow the changing density and temperature with the 

result that the vibrational energy, the energy i n  dissociation, and the energy i n  ioni- 

zation stay very nearly constant. We cal l  this flow frozen; the gas might be vibration- 

a l l y  frozen, and/or chemically frozen (frozen dissociation or no change i n  degree of  

dissociation), and/or the gas has frozen ionization. 

After this qualitative discussion we can define the thermodynamic behavior 

zcre exir-tly as follows: 
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At hypersonic velocities, as encountered during re-entry, a major fraction of 

the free stream kinetic energy i s  transformed into thermal energy behind the shock wave, 

causing excited molecular vibration, dissociation, and ionization. These higher energy 

states o f  a gas are caused by the collisions of  two respective particles, such as mole- 

cules, atoms, ions and electrons. Simultaneously, there are also the reverse processes 

occurring called recombination (of dissociation) or recombination (of ionization), due 

to another type, the so-called three-body collision. It should be rloted that the 

equilibrium state i s  a dynamic state where, for otherwise fixed conditions, the processes 

o f  dissociation, ionization, and recombination are continuously occurring and are bal- 

ancing each other. In general, a large number o f  collisions among the particles i s  

required to equilibrate the energy o f  molecular vibration, dissociation, ionization, 

and other modes of excitation with the molecular translational temperature. This means 

that a finite amount of  time i s  needed even for a gas at rest to approach the state o f  

thermodynamic equilibrium. 

The departure from equilibrium of  a flowing gas depends upon the ratio of  a 

characteristic translational time needed by the macroscopic motion o f  the particles to 

cover a typical distance, relative to the magnitude of the respective relaxation time. 

The relaxation time i s  different for each mode of excitation. Hence, hypersonic flow 

fields are, i n  general, i n  some non-equilibrium state. Only under particular circum- 

stances may the flow approach one or the other limit, i.e. , equilibrium flow or frozen 

flow respectively. Theoretically, the frozen state can be defined as a state where the 

ratio ot characrerisric rsanslaiiurlof iil-lte :G ;c!];xrtis:: t k e  qyrnnrhec 7 ~ r n  

ly, i n  case of  equilibrium flow, the ratio of characteristic translational time to relax- 

ation time approaches infinity. Considering, for example, dissociation, this means 

that in frozen flow the chemical composition along a streamline remains constant, 

independent of  the changes of  other state variables. In contrast, i n  equilibrium flow, 

the composition along a streamline w i l l  change i f  other state palameten change. 

Converse- 

Since the characteristic translational time i s  dependent on the body size, and 

since relaxation times are dependent on the temperature, density, and to some extent 

on local composition, i t  i s  obvious that non-equilibrium flow fields are generally not 

similar for geometrically similar bodies even at completely equal free stream conditions; 

LL:- I l l l J  * ; j  c; -"'cry Impc?!?.lnt fnct, 
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2.2 Hypersonic Flow Fields, Flow Conditions, and FI ight Regions During Re-Entry 

By far not a l l  phenomena in  the complete range o f  hypersonic high temper- 

ature flow problems can be studied and calculated at the present time, because they 

are too complicated. Therefore, we must concentrate our efforts on the study of those 

combinations of  variables which are today o f  the greatest engineering concern. This 

leads us to the study o f  the hypersonic flow around bodies i n  the flight corridors, 

usually plotted i n  an altitude vs velocity diagrnm because flight velocities are related 

to flight altitudes. The relation depends on the aerodynamic configurntion, such as 

a ballistic capsule or a l ift ing vehicle, on the specific area loading o f  the vehicle and, 

of  course, on the in i t ia l  velocity and path angle with which the re-entry begins. Such 

re-entry flight Corridors may also be presented i n  any state diagrnm of the gas. The 

corridors are of  great significance because they give i n  continuous sequence the range 

of  free stream conditions as they w i l l  be encountered during re-entry, as well as the 

range o f  flow conaitions a t  the important points of the flow field, such as i n  the stag- 

nation point region. More details can be found i n  Reference 1 through 3. 

Figure 1 i s  a typical blunt body configurntion used for ballistic vehicles. 

i s  a s+ricaIIy capped cone which,in high speed flight, genemtes a detached bow 

shock. The region between the shock wave and the outer edge of  the boundary layer, 

called the inviscid shock layer, has a subsonic region i n  the v ic in i ty of the stagnation 

point; farther downstream the flow i s  supenonic. Both regions of the inviscid shock 

layer are separated from the body surface by the boundary layer. Altogether then, 

there are three distinctly different flow regions, which i n  general must be analyzed 

with equally different mathematical methods. 

It 

For axisymmetric flow a t  zero angle of  attack, flow fields are symmetric with 

respect to the body axis; and the inviscid portions can be calculated by presently 

available methods even though they require considerable computational efforts. 

flow with angle of attack i s  considered and axial symmetry does not exist, analytical 

methods are not readily available. 

If the 
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The configuration of  the ApoIlo vehicle developed for lunar return i s  shown 

The capsule i s  s t i l l  an axisymmetric blunt body, but i n  Figure 2, taken from Ref. 4. 

typically i t  descends at some angle o f  attack (to a maximum of 33") which i s  varied for 

control purposes during re-entry flight. The flow field i s  completely unsymmetric, thus 

adding a maios complication to the problem. Besides the subsonic-supersonic inviscid 

shock layer, there i s  the boundary layer, and behind the body,a viscous separated 

region. The latter two regions interact in the viscous mixing region which poses almost 

unsurmountable difficulties for a theoretical analysis. 

location of  antennas, this i s  also an important region as far as electromagnetic wave 

propagation i s  concerned 

Unfortunately, because of the 

(see Reference 1). 

Before an analysis o f  the boundary layer or the wake can be made, the invis- 

c id flow field must be known. 

the determination of  the inviscid flow field. 

of gases, especially when dissociation and ionization must be considered, a truly exact 

representation i s  not possible at  the present time. Bn order to properly select a model, 

i t  i s  advantageous to first consider the conditions that are encountered along a typical 

re-entry trajectory i n  the earth's atmosphere. 

The init ial effort must, therefore, be directed toward 

Since air i s  a rather complicated mixture 

Sn Figure 3, the cross-hatched region i n  the velocity-altitude diagram indi- 

cates the re-entry corridor o f  manned space capsules from circular orbit around Earth 

w:th &cz! 7.9 Km,/sec and for lunar return w i t h  about 11.3 Km/sec. Also included 

are equilibrium conditions behind a normal shock; thus the temperature, the pressure, 

and the density as they occur in the stagnation point region of a blunt body re-entering 

the earth's atmosphere can be read from the graph. Thermodynamic data for the graph 

were taken from References5 and 6. 

. 

It i s  interesting to observe that a major portion o f  the space vehicle trajectory 

i s  approximately parallel to a line p = const. 

are practically vertical, that is, the temperature depends only on the square of the 

velocity. For higher velocities, the temperature depends on both velocity and altitude. 

The lower density of  high altitudes has the effect of increasing the degree of  dissociation 

The temperature lines at low velocities 
S 
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which i n  turn causes a temperature decrease through the transformation of  kinetic 

energy to energy of dissociation. Nevertheless, the stagnation temperature reaches 

very large values (up to 11,000 K)  in the case o f  lunar return. 
0 

Figure 4,using thermodynamic data from Reference 7, shows i n  a pressure- 

enthalpy diagram for air, the temperature T, and the compressibility factor Z, behind 

a normal shock for equilibrium conditions. Also included i s  the region o f  re-entering 

space capsules as before. The square of vehicle velocity u 

main contribution to the total enthalpy. The free stream enthalpy, which depends on 

the temperature and the density (!.e.! on the altitude), i s  very small and therefore 

neglected i n  our presentation. 

2 
1' i s  responsible for the 

The compressibility factor behind the normal shock Z, expresses the number 

o f  a l l  particles i n  a certain volume, which are partially or completely dissociated or 

ionized, related to the number of particles i n  the normal state before dissociation and 

ionization (Z,= 1). Assuming a simplified air model consists of 21% oxygen and 79% 

nitrogen only, the curve for Zs=  1 .21 indicates that nearly a l l  oxygen molecules are 

dissociated into atoms. Z,= 2 means nearly a l l  oxygen and nitrogen molecules are 

dissociated. Values of Zs>2 mean that ionization has taken place. In practice, 

some ionization w i l l  start before dissociation of a l l  nitrogen molecules i s  accomplished. 

Also, the formation of NO as well as the existence o f  other gases w i l l  lead to small 

deviations from this interpretation. 



3. THERMODY NAMlC RELATIONS INCLUDING REAL GAS EFFECTS 

3.1 ---.- The Simp1 ____-_- ified Air Model 

Before we are able to approach flow problems, dissociation of air at rest i n  

equilibrium must be studied. If all the components of the air and all the possible reac- 

tions are taken into consideration, the problem becomes very compl icated and the 

system of exact equations can only be solved by large electronic computers. 

This task has been undertaken, for example, in Ref. 8 where 6 components of 

the air, 22 individual reactions, and 28 species have been considered. As a conse- 

quence, a system of 56 simultaneous equations had to be solved. Twenty-eight of the 

equations are linear, the rest are second order or higher. 

We prefer to introduce a simplified air model which consists of oxygen and 

nitrogen only. We wi l l  consider only the dissociation of diatomic oxygen and nitro- 

gen to monatomic oxygen and nitrogen. Hence, reactions of oxygen with nitrogen after 

dissociation are neglected; in particular, that means the formation of nitric oxide, NO, 

i s  disregarded. This simplified air model enables us to understand the basic principles 

with respect to oxygen and nitrogen dissociation, and to obtain equations which can be 

easily handled and give us the oxygen and nitrogen dissociation with a very good approx- 

i r n 6 ; h  to the so-called exact values of Ref. 8. 

The chosen composition of our model air, Jefore dissocictjon, i s  3.21 O2 and 

0.79 N 2 , t y  volume. The oxygen content was very closely approximated, while the 

remaining gases in atmospheric air, mainly argon and carbon dioxide, were added to the 

nitrogen fraction. The resulting physicai consranis as used ; t i  k : G ! x F ~ ~ ~ ~ +  -l---. rnlriilo- 

tions are summarized in  Table 1 .  . 

3.2 Dissociation of Oxygen and Nitrogen in Equil i b r i E  

3.2.1 Process of Dissociation and Recombination 

With increasing temperature, we have to consider, in addition to the transla- 

tional and the rotational motions of the particles, the vibrational motion of the atoms of 

a diatomic molecule, If the raising of the temperature continues, the number and inten- 

sity of collisions between the particles increases. In the process of dissociation, e.g., 
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an oxygen molecule must collide with some other particle having enough energy to 

break up the oxygen molecule. The process of dissociation requires a considerable 

amount of energy, the so-called dissociation energy. For the recombination of two 

atoms, a triple collision i s  necessary, the third body carrying away the energy that 

the two separate atoms must releose to form a stable diatomic molecule. 

3.2.2 Definition of Degrees of Dissociation a, 

In general, at a given pressure and temperature, only a certain fraction of 

the molecules are dissociated into atoms. The degree of dissociation can be defined in 

various ways. We are using the following definition. 

Let us denote 

no2 = number of oxygen molecules per unit volume in the undissociated 

n' 

Eo = number of oxygen atoms per unit volume in dissociated mixture 

mixture 

= number of oxygen molecules per unit volume in the dissociated mixture 0 2  

- ("N2' RN2' "N respectively for nitrogen) 

Then we define the degree of oxygen dissociation a as the ratio of the number of 

dissociated oxygen atoms per unit volume to the init ial number of undissociated oxygen 

atoms per unit volume which are, of course, in molecular state, i .e., 

(3.1) 

This equation can be interpreted as the ratio of number of moles: or as the number of 

particles per unit volume, or as the mass ratio. 

We define the degree of nitrogen dissociation i n  the same way: 

- 
nN p =- * "N2 

' The definitions of a and are chosen such that a = i or p = 1 for complete 

(3 2) 

dissoc io t i on 

i .e. , when al l  oxygen+or nitrogen molecules, respectively, are split into atoms. 

^By *:mOies", 
Nymber . 

- - - -____-------  
ice=:: the rxlmber of particles (of an); species) divided > y  Avogadro's 

+. 
* ' Y  

m 0 
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The fractions of oxygen and nitrogen molecules in our air model before 

dissociation are expressed and abbreviated as follows: 

= b = 0.21 
"02  

"02  + "N2 

= (1 -b)  = 0.79 "N2 

"02 + '"2 

(3 3) 

(3 4) 

3.2.3 & o f  Mass  Action 

We describe now the individual reaction, first in the generalized symbolic 

form 

Q + v  Q + ... V1Q1;rV2 2 3 3 (3.5) 

Here Q. stands for molecules or atoms of certain species. V. are the 
I I 

stoichiometric coefficients (integers) in this reaction relation. On the left-hand side 

appears the reactant Q which i s  stable at low temperatures, and at the right-hand 1 
side we find the products Q2 and Q3 of the reaction. 

The application of thermodynamic principles leads to the so-called "law of 

mass action" (see Seciiu,l, :, :5 ,  1 .?6 zf Ref. 9 )  nnd one obtains 

v2 v3 

= K (T) (3 6) 
p2 p3 

P 1 
V 

Here p. are the partial pressures of the molecules or atoms of the species Q.. 

i s  a function of temperature only and i s  called the pressure equilibrium constant of 
I I 

K 

this particular reaction, If this reaction i s  a dissociation, K i s  related to the 

energy of dissociation, as seen i n  Eq. (3.10). 

P 

P 

In order to be more specific, let us consider the example of the oxygen disso- 
XI 

ciation : 
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o2 = 2 0  (3 - 7) 

For  this reaction, we have v = 1, v = 2, and v = 0. The energy of dissociation 

D'is defined by (Ref. 9): 
1 2 3 

D+= (2)p,T (3.8) 

where q i s  the heat addition and a the degree of dissociation. It follows from this 

law that the right-hand side of Eq. (3.8) i s  ah/aa. Thus we obtain 

D+= h, - h2 (3.9) 

D'is the energy necessary to dissociate completely a unit mass of one species in the 

molecular state, at constant pressure and temperature. Here h 

gas in the atomic state and h 

i s  the enthalpy of the 1 
the enthalpy in the molecular state. 2 

Kpa and Kpp 3.2.4 The Pressure Equil ibrium Constants 

The following differential equation for the pressure equil ibrium constant K 
----_I- 

P 
can be obtained 

R i s  the gas 2 nstan 

d In Kp - D+ 

R* T~ 
- -  

dT 

Tho r i i q c n ,  

(3.10) 

iation eneray 

D'is, in general , a function of T .  However, often this variation i s  rather small , for 

instance, in the case of oxygen dissociation between 3000'K and 5000OK. If D'is 

assumed constant, Equation (3. IO) can be integrated and furnishes 
D+ 

Kp = const. e 
L 

m 
(3.11) 

P 
stunt 'fM oxygen,.calculated from data given in  Ref. 10, i s  

10 
6 3 

atrn. In Eq. (3.11) the following combination of parameters occurs 



1 1  

D+ 

R2 
- = D' 

which has the dimension of a temperature and i s  

for dissociation. I t s  values are 

D' = 59,000 O K  for 

(3.12) 

called the characteristic temperature 

oxygen 

D' = 113,000 O K  for nitrogen. 

Equilibrium constants f o r  oxygen K and for nitrogen K are shown in  Figure 5 

as functions 3f temperature i n  t.-ie range from 2,000 to 10,0000K. These are based on 

values given in Ref. 11 up to 6,000°K; above this temperature they are taken from 

Ref. 12. 

Pa PP 

3.2.5 Degree of Oxygen and Nitrogen Dissociation as Function of Pressure and 
Temperature 

We start with the reaction equation for our simp1 if ied air model , but include 

dissociation of both oxygen and nitrogen. 

-+ - N +; O+ ' iNN 
"02'2 +nN2N2 "02O2 ""2 2 0 (3.13) 

As mentioned before, n. and n'. are the number of moles of the particular species, 

which are also proportional to the number of particles in a certain volume. We wi l l  

write the conservation of mass for oxygen and nitrogen and observe that one mole of 

I I 

diatomic oxygen or nitrogen gives two moles of mon-atomic oxygen or nitrogen, 

- - 
N 2 nN2 = 2 nN2 + n 

(3.14) 

(3.15) 

Now we consider the individual reactions and obtain, according to the law of mass 

action Eq. (3.6), the following equations with the equilibrium constants K and 
Pa 

PB 
K 

2 - 2  

(3.16) 
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2 - 2  

(3.17) 

Here p. i s  the partial pressure of the component in the dissociated mixture, while p i s  

the total pressure of the mixture, measured in atmospheres. In' i s  the total number of 

moles in the dissociated state, the right hand side of Eq. (3.13). This i s  a consequence 

of the fact that the sum of the partial pressures must be equal to the total pressure. 

This system of four equations (3.14)) (3.15), (3.16), and (3.17) contains four 

I 

ti R R ) i f  pressure p, temperature T (and therefore K ), 
0 2 '  N2' 0' N P 

unknowns (E 

are given. I t  can be reduced to two 0 2 '  "N2 and the original molar composition n 

coupled quadratic equations for a and p which must be solved simultaneously by 

trial and error. An explicit solution with two separate quadratic equations for a and 

p are obtained i f  we make use of the physical fact as mentioned before, that oxygen 

i s  almost completely dissociated before dissociation of nitrogen begins. Then we have 

for that temperature range where only oxygen dissociation occurs Fi = 0 and N 
and therefore - - - 

nN2 "N2' 
- -  

I n = n  +n + n  0 2  0 612 (3.18) 

Equation (3.16) can be transformed with the aid of the equations (3. l), (3.3), 

(3.141, ana (s. 12). T!;;;; *.YE &tnin 

4 b a  2 4a2 
- 
b 

KPa - 
2 

- -  
P ( 1  -a) ( 1  + b a )  4.762 - 3.762a - a 

(3.19) 

If temperature and pressure are given, the left-hand side i s  known with the aid of Fig. 5, 

and a can be calculated. This formula i s  valid for 0 < a < 1 .  

F o r  higher temperatures, both oxygen and nitrogen wi l l  dissociate. However, 

the solution w i l l  be simplified again due to the same physical facts mentioned above. 

With increasing temperature (at fixed pressure), we reach the point,where oxygen i s  

almostcompletely dissociated, when nitrogen starts to dissociate t i  = 0 and n' 
= 2iiO2. 0 2  0 
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Under this assumption, and with eq. (3.14), we obtain for the temperature range, 

where nitrogen dissociation i s  present: 

(3.20) 

In order to evaluate eq. (3.17) for K 

of the degree of nitrogen dissociation (3.2). We are eliminating n 

and we are introducing the numerical value for the ratio n /n  from eqs. (3.3) 

and (3.4). This finally results in the equation for nitrogen dissociation 

we introduce eq. (3.20) and the definition 
PP I 

by eq. (3.15) N2 

N 2  0 2  

4P2 - - 4P2 
K 
pB= 

(1 -p) + (1 -p2)  1.5316 - 0.53168 - p2 p -  2b 
( 1  -b) 

(3.21) 

The degree of oxygen dissociation a and nitrogen dissociation p are calculated for the 

simplified air model using sqs.(3.19) and (3.21) as function of temperature and 

pressure and presented i n  Fig. 6. It can be seen that the dissociation for both species 

increases for a certain pressure with increasing temperature, and for Q certain tempera- 

ture with decreasing pressure. Note that at 5000OK and at the pressure of 1 atmosphere, 

the oxygen dissociation i s  almastcomplete(a close to 1 .O) while the nitrogen dissocia- 

t ion for the same pressure just starts@ approximately 0.01). This illustrates the fact 

that oxygen and nitrogen dissociation are practically uncoupled. This is  a result of 

the markedly different values K and K at a given temperature. Fig. 5 shows 

that between.4000' and 6000O K, K i s  a factor of 10 to 10 larger than K . 6 4 PQ PP 

Pa PP 

3.3 

3.3.1 

Thermal Equation of State for Oxygen Dissociation Only 

Simp1 if ied Air Model with Restriction to Oxygen Dissociation 

The task of the calculation of hypersonic flow through nozzles or around blunt 

and pointed bodies, as presented in Sections 4, 5, and 6,is so substantial that we wi l l  

further simplify our air model. We w i l l  introduce an additional restriction, namely to 

oxygen dissociation only. In other words, the range of application expressed i n  the 

appropriate ranges of temperature and pressure 

Even with these simp1 ifications and restrictions, the resulting thermodynamic equations 

ore s t i l l  complex. This air model permits us to gain insight into the distinct features 

i s  such that on1 y oxygen may dissociate 
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of non-equil ibrium flow phenomena with a minimum of computational effort, which, as 

i t  wi l l  be seen, i s  s t i l l  large. 

3.3 .2  Derivation of Thermal Equation of State 

We wi l l  denote the number of particles of the ith species per unit volume of 

the undissociated mixture with n. and that of the dissociated mixture with ii., and the 

mass of one particle of the ith species with m.. 
I I 

I 

The density of the mixture becomes 

p = I m.n. 
i I I  

(3.22) 

Assuming that the individual species obey the perfect gas law, a very important assump- 

tion, the total pressure of the mixture i s  the sum of its partial pressures, or 

p = I p .  = I p.R.T 
* I  i I I  
I 

The specific gas constant of each species i s  given by 

(3.23) 

(3.24~) 

Combining the three last equations, we obtain the pressure,and dividing it by equation 

(3.22), we obtain the equation of state as 

I n. 
P = k T -  i '  

1 m.E. , . !  . I  
P 

(3.24b) 

We have i n  the mixture at any state, 

particles of molecular oxygen and n 

observe that the mass 

eq. (3 .26)  and also using eq. (3.1) and equation (3.3), one obtains: 

- particles of atomic oxygen, (1 - a)nO2 

particles of molecular nitrogen. We must also N2 
Inserting those values in N' mO2 = 2 m  and m = 2 m  0 N2 

= (1 +ba)RT = ZRT (3.25) 

where 2 = (1 + ba) (3.26) 
P 

and numerically b = 0.21 (3.3) 
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Here R i s  the gas constant of the undissociated gas. 

factor (see Section 2.2 and Fig. 4). A more detailed derivation of the thermodynamic 

equations of this and the following thermodynamic sections can be found in Ref. 13. 

Z i s  called the compressibility 

3.4 Equations for Internal Energy and Enthalpy for Oxygen Qissociation Only 

3.4.1 Energy States of a Gas Particle; 0nd Partition Functions 

The thermodynamic properties of 0 gas may be derived from its partition 

function. Details concerning the partition function may be found in texts on statis- 

tical thermodynamics (Ref. 14, 15, 16). We wi l l  only summarize those relations that 

are needed for our calculations. The partition function i s  closely related to the 

energy of the particle. In our case, the energy may be due to the translational, 

rotational, or vibrational motion of the particle, and at higher temperatures due to 

the motion of the electrons within the particle. Assuming that no coupling exists 

between the different modes of excitation, the partition function may be written as 

the product 

Q = Q Q Q Q  (3.27) 
t h v e  

The factors on the sight hand side are the partition functions associated with the 

translational, rotational, vibrational, and electronic energy levels of the particle. 

For diatomic molecules these factors are: 
3 

.2nmkT,T kT 
h ? 

ut = \ T I  - 

8mLIkT- T 
n h 2  n0 

Q ",--- 

(3.29) 

(3.29) 

(3.30) 

(3.31) 
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For monatomic particles, such as oxygen or nitrogen atoms, which have no mode of 

rotational or vibrational excitation, the respective partition functions take the value 

unity. The contribution of those modes to the internal energy then becomes zero, 

Table 2 presents atomic and molecular constants which were used in  our calculations. 

Note that in eq. (3.31) , E .  i s  the energy of the ith state of a gas particle, and 

g. i s  the degeneracy, that i s  the number of states of a particle which has this same 

energy level. 

I 

I 

In the following section we shall need Q and Q , the partition functions 
C P 

for the standard state of unit concentration and of unit pressure, respectively. They are 

functions of temperature only, and in terms of the total partition function, they are 

given by 

Q = -  ‘ Q  
c kT (3.32) 

Q = p Q  (3.33) 
P 

3.4 .2  Internal Energy Equation 

According to statistical thermodynamics, the internal energy pes kilomole of 

a pure gas i s  given by 

2 d I n Q c  

dT 
e = R*T (3.34) 

Since the total partition function i s  a product of the individual partition functions and 

equation (3.34) has a logarithmic character, one sees  iiiut :he cz:!:!!x!!cn cf the 

various energy modes to the internal energy are additive. We insert in eq. (3.34) 

the partition function (3.32) and (3.27) with its components (3.28) through (3.30). 

At the same time, in the range of temperature which we have under consideration, we can 

neglect the electronic excitation (3.31). (We also observe that atomic oxygen consists 

of monatomic particles, while oxygen molecules and nitrogen molecules are diatomic 

particles.) As a result, we obtain 

eo = ;R*T (3.35) 
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e02R* 
e,JT e = 5 R * T +  0 2  2 

UL 
e -1 

(3.36) 

(3.37) 

e - I  

It i s  obvious that i n  the above expressions i t  is assumed that the vibrational temperature 

and rotational temperature are always in equilibrium with the translational temperature. 

The internal energy of the gas mixture, E, i s  the weighted sum of the internal 

energies of each species due to the various modes of excitation (translation, rotation, 

vibration) and of the dissociation energy of the dissociating component, 

fo E = ?  f . e . + -  
[ J I 2 D 0 2  (3.38) 

This i s  called the internal energy equation for the mixture. 

for the dissociated mixture which are obtained as 

f; denotes the mole fractions 

(3.39) a fo = 2b - Z 

- 1 - a  
f,, - b- -- Z (3.40) 

(3.41) 
fN2 = ( 1 - b ) r  1 

Equation (3.39) has the factor 2 because each oxygen molecule which dissociates wi l l  

produce two atoms of oxygen. If we have one mole of gas before dissociation, then we 

w i l l  have Z moles after dissociation. Hence, the factor Z occurs i n  the denominator 

of a l l  mole fractions, in order to refer the number of particles to one mole. We do not 

present here the complete equation for the internal energy in detail because i t  i s  much 

more practical to use the equation for the enthalpy given in the next section, 



18 

3.4.3 Enthalpy Equation 

The enthalpy of the gas mixture i s  defined in  the same way as i s  the enthalpy 

of a gas with on1 y one component. 

h =  E+e  (3.42a) 
P 

E i s  calculated according to eq. (3.38) with the mole fractions according to (3.39), 

(3.40), (3.41) and the energy of the particles of the components according to (3.35), 

(3.36), and (3.37). We have to observe that 
M 

a Z  (3.42b) M = -  

which relates the molecular weight of the dissociated mixture Ma to that of the 

undissociated air M. The second term in eq. (3.42) i s  substituted from eq. (3.25). 

Note that we switch from the universal gas constant R*, with units (J/kmol O K )  

to the gas constant of the undissociated gas, R, with unit (J/kg OK). The enthalpy 

equation (per kilogram) i s  f inal ly obtained as 

6 i s  the characteristic temperature 

ture of dissociation. This enthalpy i s  then given in  joules per kilogram. 

of vibration, and D' the characteristic tempera- 

m. . .  3.5 Dissociation and Recombination Rate Equations tor Gxygen ~ i s s ~ c i ~ f ; ~ ~  

3.5.1 Departure from Equil ibrium 

In general, a large number of collisions among the particles i s  required to bring 

the molecular vibrations, dissociation, and higher degrees of excitation in equilibrium 

with the local translational temperature. This means that a finite amount of time i s  

needed for the gas properties toapproach thermodynamic equil ibriurn. The departure from 

equilibrium of a flowing gas i s  characterized by the magnitude of this relaxation time 

relutive to some translational time needed by the particles to move over a characteristic 

distance on a body or within a nozzle. Since only oxygen dissociation i s  considered, 

on1 y one cnemicai rate cqcotlnn i s  needed. ' * I  Vibrational re1 axation should be also 
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included when higher accuracy i s  required. In view of the complexity that would be 

introduced if the coupling between vibration and dissociation were treated, i t  i s  felt 

that i t  i s  justified to assume the vibrations to be i n  equilibrium. 

3.5.2 Dissociation and Recombination Rate Equation 

The number of oxygen atoms, in either molecular or atomic form, per unit 

mass of the gas can be written as 

NA 
C z 2 b - j q -  (3 .44) 

The number of free oxygen atoms per unit volume of the gas i s  then 

no = C a p  (3.45) 
- 

We are now interested in the number of oxygen atoms generated per unit volume and 

unit time, denoted by w. From eq. (3.45) together with the over al l  continuity 

equation, one can obtain the following relation between the net production of oxygen 

atoms generated and the gradient of the degree of oxygen dissociation, a as 

-b 
w = C p  ( q  egrada) 

The net rate of oxygen atoms generated by unit volume of the gas i s  

0 dn’ 0 dii 
w = ( -  dt ’diss -t ( T ’ r e c  (3.47) 

The first term i s  positive because dissociation increases the number ot tree 

atoms; the second term i s  negative because recombination decreases the number of free 

oxygen atoms. The process of dissociation or recombination which may occur i n  our 

present air model can be described by 

d, i k 
-+ 

Q + O + M .  O2 + Mi $- 1 
(3.48) 

$ r  I 

In the process of dissociation, the oxygen molecule must collide with another particle 

Mi of the ith species, either an oxygen atom or molecule or a nitrogen molecule i n  our 

nir model. kA Y i s  the dissociation rate constant which depends strongly on the type 
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of the coll iding body Mi, 

In order to occur, i t  i s  necessary that two oxygen atoms collide at the same time with 

a third body Mi , which i s  able to carry away the energy in such a way that two atoms 

can form a stable diatomic oxygen molecule, It i s  obvious that also the recombimtion 

rate constant w i l l  depend on the type of the coll iding body Mi . Obviously, recombi- 

nation requires a three-body collision and hence i t  i s  much more rare than the collision 

which produces dissociation. The number of particles pes unit volume that may act as 

col I iding bodies wil I be for our air m d e l  

The recombination process i s  the inverse of the dissociation. 

Adding the species together, we obtain after some calculation 

(3.49) 

(3.50) 

From the law of mass action, discussed in Section 3.2.3, i t  follows that the rate of 

change of concentration i s  proportional to the product of the concentrations, raised to 

the power of the stoichiometric coefficients. The application to our specific process 

of dissociation expressed in  eq. (3.48) gives the rate of production of oxygen atoms 

dii 
(3.51) 

The rate of the disappearance of oxygen atoms due to recombination i s  given i n  a 

similar way by 

(3.52) 

Note that the dissociation rate depends on the first power while the recombination 

rate depends on the third power of the free oxygen atoms, a consequence 

of  the two and three body collisions. 

reaction rate "constants" for dissociation and recombination respective1 y. They wil  I 

be discussed in more detail i n  Section 3.5.4. 

kd and kr are the temperature dependent 
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(3.55) 

3.5.3 Net Production and Source Function 

In order to obtain the net rate of oxygen atoms generated, we substitute (3.51) 
and (3.52) into (3.47) and obtain 

e - -  -L - 
w = kdnO2nM - krnOnM (3.53) 

For local thermodynamic equilibrium, the net rate of oxygen atoms generated vanishes, 

i.e., w = 0. Hence, 
3 

(3.54) 

where Kc i s  the concentration equilibrium constant for the considered reaction. Now 

we make the important assumption that the above relation, derived for equilibrium, i s  

also val id when the flow i s  not in chemical equilibrium. Then we substitute equations 

(3.45) and (3.49) into equation (3.53) and also use equation (3.54) to eliminate k,, 

because the recombination rate constant i s  

Kc are much better known. This furnishes 

generally not too well known, whi le kd and 

Substituting this. oxygen atom generation rate into equation (3.46), the desired rate 

equation finally i s  

+ 
q 'grad a = F 

where 

(3 56) 

(3.57) 

It i s  important to see that the dissociation process i s  proportional to the density and the 

available oxygen molecules, whi le the recombination process i s  proportional to the 

square of the density and the square of the number of oxygen atoms already dissociated. 
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3.5.4 Reaction Rate Constants 

The processes of dissociation and recombination occur at f inite rates. The 

rate "constants" for both processes were defined i n  equations (3.51) and (3.52). 

In order to evaluate the rate equation (3.57) we .s t i l l  need an expression for the 

dissociation rate constant. Ordinary kinetic theory i s  not completely adequate to 

predict these rate constants. In practice, the rate constants are usually given in a 

form similar to the one which was first suggested by Arrhenius and based largely on 

experimental data, namely, 
- E ~ / R * T  

k = S e  d (3.57 a) 

where for dissociation, Ed i s  the activation energy for dissociation and S the 

corresponding frequency factor. 

A comprehensive review of recent work carried out in the f ie ld  was given by 

Wray (Ref. 17). His values wi l l  be used in the present investigation? Due to the 

simplification introduced, eq. (3.51) and (3.52) were written with a single rate 

constant each for dissociation and recombination. In order to account for the influence 

of the catalytic species, we wi l l  use a dissociation rate constant, which i s  averaged with 

respect to population, of the form 

k = T f k  d I i d,i (3.58) 

where the f; are the mole fractions and where the kd 

constants (for oxygen) with the ith species acting as catalyst. 

denote the dissociation rate 
I 

Using now &e , d e  fit=?r2nc =z 2i-n in ea. (3.39) and (3.41) and Wray's 

values, the oxygen dissociation rate constant i s  

D 1.5 - -  
1 2.5 lo8 D R*T 41 b a  + 7b  + 2 

(j$ e ( l + b a  
kd = * NA 

(3.59) 

3 wi th the dimension ( m  /particle sec). It i s  seen that the dissociation rate "constant" 

i s  actually a function of temperature T, and composition a . Fig. 7 shows the range 

of this equation for a between 0 and 1, together with the values of other authors for 

various col I iding bodies. 

*See footnote on page 24 
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3.6 Equilibrium Constants for Oxygen Dissociation Calculated From Statistical 
Thermodynamics 

3.6.1 Concentration Equilibrium Constant K C 

In order to evaluate the rate equation and to calculate the equilibrium cornpo- 

r i t ion for our air model, the equilibrium constant as function of the temperature i s  

needed. The concentration equilibrium constant has been expressed previous1 y accord- 

ing to eq. (3.54). - 
(3.54) 

P 
3.6.2 Pressure Equilibrium Constant K 

The pressure equilibrium constant K is'defined in terms of the partial P 
pressure as derived before (see eq. (3.16) and (3.17)). It depends on the partition 

functions and the energy of the products and the reactants. For the oxygen dissocia- 

tion reaction the equilibrium constant becomes 

(3.60) 

Because the equil ibrium constant contains the ratio of the partition functions, we cannot 

neglect the electronic contribution as wc: did I;; d c u ! ? + i n z  the internal energy. How- 

ever, only those energy levels which give an appreciable contribution within the tempe- 

rature range in which our air model i s  valid were considered. Equations (3.27) through 

(3.31), and (3.33) are substituted into (3.60). Using the numerical values one obtains 

2270 -228/T -326/T 1 * ,- 59366- -1 L t 3 e  + e  T 

where 

K = A T 3 I 2  J c - -  (3.61) P P + 2e-l 1390 

5 2 
A = 2.444056 10 for K N / m  

P P 

= 2.412096 for K atm 
? 
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Explicit expressions for the constant Ap are given both in Newton's per square meter, 

as well as i n  atmospheres. The concentration equilibrium constant, described before, 

i s  related to the pressure equilibrium constant by 

K .. 

Kc = $ 
3 2 

and has the dimension (particles/m ) i f  Kp i s  used in  (N/m ). 

3.6.3 Eauilibrium Flow Relation 

(3.62) 

For equilibrium flow Q relation between the equilibrium constant and the 

degree of dissociation i s  very useful and necessary in order to carry out such calcula- 

tions. This can be obtained by considering the fact that for local equilibrium, the net 

rate of production of oxygen atoms w must vanish. 

obtain 

If we set eq. (3.55) to zero we 

(3.63) 

Using eq. (3.25) to substitute p and (3.44) to substitute C, and using eq. (3.62) 

to change from the concentration to the pressure equilibrium constant, one obtains 

B 
(3.64) 

The above equation i s  identical with equation (3.19) obtained earlier by different 

means. Theequation relates the composition for any state of thermodynamic equil ibrium 

within the range of oxygen dissociation to the pressure and the pressure equilibrium 

constant, which i s  a function of temperature only according to (3.61). I t  has to be 

used for any flow calculations which assume equil ibrium conditions. 

- - -______- - - - - -  

Footnote from page 22: 
In Reference 17 and others, as well as in this paper, the activation energy for dissociation, 

Ed that the activation energy for recombination of 2 atoms i s  neariy zero (Ref. 40). 
, i s  assumed eqi;c! fc? the enery of dissociation D. This follows from the observation 
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4. NON- EQUILIBRIUM FLOW WITH OXYGEN DISSOCIATION THROUGH A 
HYPERSONIC NOZZLE 

4.1 Assumptions and Basic Equations 

The flow through a hypersonic Lava1 nozzle of small or moderate cone angle 

i s  almost one-dimensional. Hence, i t  i s  much easier to understand than the hyper- 

sonic flow around bodies, and i s  also much easier to treat mathematically, because 

the flow i s  described by ordinary instead o f  partial differential equations. Hence, 

flow through Q noz-._le i s  well suited to demonstrate equilibrium, non-equilibrium, 

0nd frozen flow. On hc t ,  for the practical cases calculated below, a l l  three regimes 

occur i n  the same nozzle i n  sequence due to the expansion from high to low temper- 

atures and densities. 

We w i l l  first consider the f low through a hypersonic nozzle up to Q Mach 

number o f  about 15 for various supply conditions, nozzle geometries, and sizes. 

The flow through a hypersonic nozzle has been calculated under the assumption of  

one-dimensional flow with the basic thermodynamic relations specified i n  Section 3 

for the real gas effects and particularly for the simplified air  model. In  addition, 

viscosity, diffusion, and heat conductivity of  the air  are neglected. Five equations 

have been established. The continuity equation and the momentum equation i n  the x 

direction are ~f the conventional form and, hence, are omitted here. 

there are: the equations of  energy containing the enthalpy, the equation of  state, and 

the rate equation, a l l  of  which are derived i n  Section 3 (Eqs. 3.38 , 3.25 ,3 .59) .  The 

5 unknowns are velocity u, pressure p, temperature T, densi iy p, GX! d ~ r n p  a'- - nf dissoci- 

ation a . I n  addition, the energy equation (3 .38 )  contains the enthalpy h, wt,ich i s  

expressed by B and a through equation (3 .43 ). I t  was possible to eliminate pressure 

p and velocity u from the 5 equations and, hence, 3 ordinary differential equations 

remain to be solved 

In addition , 

(Eqs. 4.1, 4.2, 4.4) .  
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0 2  n 

"02 + "h12 

2 A  2 RZT p 
K Z  ; b s  

- 
d x -  R Z - L  a ( 1 - K )  

aT 

(4.4) 

T h i s  system shows the derivatives for a, p, and T with respect to x. It 

i s  noted that the derivative of Q depends only on the state o f  the gas and the area. 

The derivative of the density contains, besides the state of gas, the derivatives o f  a, 

T, and the area change. The derivative of the temperature contains also the deriva- 

tives o f  a and the area change but, in particular, two partial derivatives of  the 

enthalpywith respect to a and T. 

4.2 Flow Calculations 

It can be proven exactly with the methods o f  irreversible thermodynamics, that 

equilibrium flow with changing degree of dissociation, i f  adiabatic, i s  also reversible 

and isentropic. The same i s  valid for adiabatic frozen flow with constant chemical 

composition. However, the generai case of ~u';~ki:Ic :cR-=qe!!!hriim flow i s  not 

isentropic. 

Calculations have been carried out for the flow assumed to be in equi- 

librium as well as for the general case of non-equilibrium flow, in order to 

compare the results of the two concepts. In the subsonic portion of the nozzle, because 

o f  the low velocity, the flow i s  assumed to be i n  equilibrium up to the throat, but this 

assumption should be checked for any particular case. The subsonic expansion i s  then 

Isentroplc; consequently, the temperature, compressibility factor, and the enthalpy can 

be determined from a Moll ier chart for arbitrary values o f  the pressure, following a l ine of 

const. entropy. The corresponding density and velocity can then be calculated. The throat 
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conditions can be bund by calculating the mass flux QS function of x which must be a 

maximum at  the throat. 

Iln the supersonic portion of the nozzle and for the equilibrium flow calculation, 

the same procedure has been followed. Such results have been presented by several 

authors. The essential contribution o f  our former investigation (Ref. 3) i s  the calculation 

of  the non-equilibrium flow. The throat conditions determined from the equilibrium 

flow calculation represent the init ial values for the non-equilibrium flow in  the super- 

sonic portion of the nozzle. In addition, i n  order to start the numerical integration, the 

derivatives at the throat had to be specified and they were taken to be those of  the 

equilibrium flow 

In non-equilibrium flow the solution depends on the shape of the nozzle and 

on 

an 

i t s  absolute dimensions. Because many Rypenonic nozzles are axisymmetric and have 

approximately conical shape, the following geometry has been selected: 

with the parameter 

d 

where d is the diameter o f  the throat and x i s  the asymptotic angle o f  the nozzle. 

The numerical calculations have been carried WU; f ~ ;  *;srkus vz !~~-  of the 

parameter f ranging from about 8.9 to 2.0 cm. This coven a family o f  nozzles with 

cone angles ranging from 5 

with total nozzle lengths between 90 and 200 cm and with a maximum area ratio o f  

10,000. 

8 
to 30Q, with throat diameten ranging from 0.15 to 2.0 cm, 

As the shape of  the nozzle is a specified function of x, the above system of 

differential equations could be simultaneously solved on a high speed computer, the 

IBM 7090, using the so-called third order Runge-Kutta integration method. 
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4.3 Numerical Results of Hypersonic Nozzle Flow 

The degree of oxygen dissociation a along the hypersonic nozzle i s  shown in  

Figure 8 for some characteristic supply pressures and tempemtures. Both equilibrium and 

non-equilibrium flow calculations are shown i n  the same diagram. For equilibrium flow, 

the degree o f  dissociation decreases rapidly due to the strongly decreasing temperature 

and density. In contrast, non-equilibrium flow shows only small effect of  recombination 

and then freezing of the degree o f  dissociation a shortly downstream of the throat, at  

an area ratio of 2 to 5. From there downstream, the degree of the dissociation stays 

very nearly constant, or stated differently, the chemical composition i s  practically 

frozen. At a fixed supply pressure, the degree of dissociation at which the flow freezes 

increases with increasing supply temperature. At a fixed supply temperature, the frozen 

dissociation decreases with increasing supply pressure. 

The freezing o f  the chemical composition just downstream of the throat was 

already observed by Bmy (Ref. 18) for Lighthill's "ideally dissociated gas". This can be 

explained by the fact that dissociation and recombination processesl which are balanced 

i n  the reservoir due to equilibrium conditions, decrease at different rates as the air  

expands, In particular, the rate of dissociation tends to zero first, decreasing strongly 

with temperature and thereby leaving first the recombination rate as the net reaction, 

and a decreases. Later, also the recombination rate tends to zero because i t  i s  pro- 

portional to the square o f  the density. Hence, C;U,/dn z p ! d ! y  npproaches zero in the 

divergent portion o f  the nozzle, meaning a becomes constant. 

The temperature distribution along the hypersonic nozzle i s  shown in Figure 9 

for both equilibrium and non-equilibrium flow for a supply pressure of  50 atm and for 

various supply temperatures. 

much different than those calculated from an assumption of equilibrium. The ratio 

of equilibrium to non-equilibrium temperature can reach a factor 4 in certain 

cases. The reason for i t  i s  the fact that the energy of dissociation, which i s  contained 

in  the gas near the throat, i s  released step by step i n  equilibrium flow. In contrast, a t  

non-equilibrium flow t h i s  energy stays practically frozen in the gas and does not con- 

tribute to the temperature. Because rio a n e ~ y  I s  released i n  the non-equilibrium flow, 

The temperatures calculated for non-equilibrium flow are 
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this corresponds very closely to an adiabatic expansion of a perfect gas, of course w i th  

a different y than for air at  standard condition. The temperature distribution for a 

perfect gas with y = 1.4 has been included for comparison. 

The Mach number distribution along the hypersonic nozzle i s  shown i n  Figure 10 

both f o r  

Because sound velocity i s  closely related to temperature, the Mach number distributions 

show similar strong discrepancies between equilibrium and non-equilibrium flow. The 

ratio of  the Mach numbers between the two cases can reach a factor 1.8. i t  i s  noted 

that the Mach number for a perfect gas with 7 = 1.4 i s  close to the lines of non-equili- 

brium M0ch numbers. It should be obsesved that the liberation of  the dissociation energy 

by the recombination process i n  equilibrium flow defeats markedly the purpose of  a 

hypersonic nozzle, namely bo produce high Mach numbers by Q certain expansion ratio. 

For non-equilibrium flow fortunately, this undesired effect has been strongly reduced or 

cancelled. For most experiments, both a high Mach number and an undissociated free 

stream are desired, whereas non-equil ibrium flow results in a dissociated free stream. 

equilibrium and non-equilibrium flow for a supply pressure of 10 atm. 

Pressure and density distributions have also been calculated for the same 

combinations of  supply pressure and temperature. They are not presented here. Pressure 

i s  affected similarly, but somewhat less than temperature. The ratio between equili- 

brium and l i ~ ; l  qz!l ihr ium flow can reach kictor 3 .  The density i s  very l i t t le affected, 

only up to 15%. Investigation of  the effect of the length parameter +, vv!ii& Y Z C  

varied a f0ctor 2 . 3 ,  on the flow parameters reveals practically no influence of the 

nozzle, i f  the flow parameters are compared at a specified area ratio A/A*, Only a 

very smaII decrease i n  the degree of dissociation (of about 1%) can be observed 

comparing the shortest and the longest nozzle, that i s  the longer nozzle only slightly 

assists i n  the recombination process. 
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5. NON-EQUILIBRIUM FLOW AROUND BLUNT BODIES WITHOUT AND WITH 
DISSOCIATION IN THE FREE STREAM 

5.1 Direct and Inverse Methods for Flow Calculation 

The importance of blunted shapes in the hypersonic flight of a vehicle re-enter- 

ing the atmosphere from outer space has led to many investigations of hypersonic flows 

with detached shock waves, lasing both inverse and direct methods. In the inversemethod 

a certain shock shape i s  assumed or prescribed, and then the governing equations are inte- 

grated through the flow field, and the associated body shape follows from the calculation. 

This method has the advantage that the problems associated with the specification of 

boundary conditions along an unknown shock wave are avoided. Although i t  has been 

successfully applied, for example, by Hall (Ref. 19) even for real gas, the method i s  

extremely tedious i f  the flow field around a desired body shape has to be determined. In 

contrast, the investigators at the University of Alabama Research Institute i n  Huntsville 

have used a direct method, where the body shape i s  given and the flow field, including 

the shock shape, i s  Q result of the calculation. This method uses "integral relations". 

In 1959 Dorodnitsyn (Ref. 20) had described this method of integral relations 

for the solution of two-dimensional boundary value problems. This method i s  also appli- 

cable bo problems with free boundaries, such as the shock wave, and has first been 

applied by Belotserkovskii (Ref. 21) to the calculation of supersonic flow of a perfect g a s  

y q t  a circular cylinder. Also, using a perfect gas, the basic work has been extended by 

various other authors (Ref. 22, 23, 24) for other body &lUi;c;. 

Up to the present time, only a limited number of investigators have obtained 

results for real gas flows in connection with the integral method. The first results were 

presented by Shih, Baron, e.a. (Ref. 25), for hypersonic non-equilibrium flow of air 

past a sphere. Simultaneously, Yalamanchili and Hermann (Ref. 3, 26) investigated non- 

equilibrium flow of air past a circular cy1 inder for one particular case. Later Belotser- 

kovskii (Ref. 27) used the integral method to calculate equilibrium flow of air past 

spheres and el I ipsoids 

Very recently Hermann and Thoenes (Ref. 28) have given new, extended and 

jmproved results for non-equilibrium hypersonic flow of air past a circular cylinder. 

They have also treated, for the first time tn the author's knowledge, the case of dissocia- 
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r-momentum : 

tion i n  the free stream. Such conditions are encountered either in the atmosphere at 

high altitude (above 90 km), or in the nozzle of d e r n  heated high speed flow facilities 

designed to simulate re-entry flight conditions, where appreciable frozen dissociation 

may occur (Section 4.3). 

5.2 The Integral Method of Dorodnitsyn and I t s  Application to the Inviscid Flow 
Around a Circular Cylinder 

5.2.1 Basic Equations 

We are restricting ourselves to inviscid flow, and hence we are neglecting 

viscosity, heat conduction and also radiation. We are using the basic equation of 

motion for steady adiabatic flow. A polar coordinate system, referred to the center 

Bine of the cy1 inder, i s  the most suitable one. Figure II shows the cy1 inder with the 

radius r 

local shock wave detachment distance A, and the various velocity components beforc, 

and behind the shock. The transformation of the four conservation equations from the 

vectorial form to polar coordinates i s  standard. The results are four partial differential 

equations: 

the shock wave produced by the flow, the local shock wave angle u, the b8 

Conservation of mass : 

Q-momen tum : 

+ vr- au + uv + - ' k i 0  
ar P ae 

Rate equation : 

The last equation,expressing the conservation of oxygen atoms, had to be added since ))Io 

gas tlorler consideration i s  reacting. F i s  the source function of oxygen atoms, derived 

i n  Section 3. 
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F =  
C2:Zkd 

2b 
r i  - a  (5 .5 )  

In order to solve these equations for the unknowns, they must be supplemented by the 

equation for the conservation of energy, containing an expression for the enthalpy 

derived in Section 3 (Equ. 3.43). 

and by the thermal equation of state given before (Section 3). Note that the first three 

equations (conservation of mass and of the two momenta) are independent of the parti- 

cular g0s model, while the last three equations (rate, energy, equation of state) do 

depend strongly on the particular gas model. The conservation of mass and the r-momen- 

tum equation are given in the so-called divergence form, which is  required for the 

application of the integral method. 

5.2.2 Boundary Conditiom 

The condition for flow tangency on the body surface i s  

V b  = 0 (5 7) 
-. ine cw~idIt!=nc behind the shock are obtained from the conservation of mass, momentum 

and energy across the shock in  the conventionai way. T k  pclrameters across the shock 

depend considerably an the free stream conditions such as velocity, composition, (for 

instance, whether free stream dissociation i s  present or not), and the temperature. In 

addition, they depend on the way the transition takes place through the shock, i.e., 

whether the gas i s  assumed to be in equilibrium or in the frozen state immediately down- 

stream of the shock. For the present non-equilibrium flow calculation, it w i l l  be 

assumed that the chemical composition of the air does not change across the shock, i.e., 

I t  may be notod that numertcal results of the above shock calculation are - 
al-  a *  S 

given for a wide range of free stream conditions in Ref. 29. 

Various relations between the velocity components before and after the shock 

which wil l  be needed later are obtained f r c m  Figure 11. The same figure also indicates 
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that the relation between local dimensionless shock wave distance from the body e 

l and the shock wave angle 0 i s  given by 

- - -  de - (1 + e) c o t ( 0  i- Q) 
de 

where u and Q are functions of 8 .  

5.2.3 Application of the Qne-Strip Integral Method 

(5 8) 

The method of integral relations, proposed by A. A. Dorodnitsyn (Ref. 20), and 

first applied by klotserkovskii (Ref. 21), i s  already well known. I t s  application to the 

calculations of hypersonic flow past blunt bodies w0s also described in Ref. 3 and wi l l  

not be repeated here. In contrast to the presentation given in Ref. 3, a SI ight modifica- 

tion of the method, previously used in Ref. 25 and 13, has been applied. It consists of 

a reduction of the number of equations for which the linear variation, typical for the one- 

strip integral method, must be assumed. 

Due to the boundary conditions (eq. 5.7), it can be seen that the &momentum 

equation and the rate equation may be used in  their exact forms. Hence, only two 

equations of the set, namely the conservation of mass and the r-momentum equation, are 

approximated by assuming 0 linear variation of certain integrands across the shock layer. 

Thus an integration of the equations in the direction of the radial coordinate can be per- 

formed, which in turn resu;;, :;; t:.:~ nrdinary differential equations with the tangential 

coordinate as independent variable. Making use of the boundary condition (eq. 5,i ' ) ,  

the complete set of governing equations are as follows: 

Cont i nu i ty : 

pb duS 
+ + P s ~  

du b 
Pb de 

*PS vs] 
- p u ) cot (u  + e )  - ' + [(pb 'b s s 

e 
(5.9) 

Q-momentum: 

(5. 10) 
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Rate : 

Energy: 

Ub Fbrb 

Equation of State: 

= p R Z T  pb b b b  

(5.11) 

(5.12) 

(5.13) 

(5 .14)  

These constitute, together with the geometric relation (5.8), a system of seven 

equations for the seven unknowns. There are four ordinary differential equations and 

three algebraic equations. The seven unknowns are the five parameters along the wall 

of the cylinder u9, %, pb, Tb, ab, and the two parameters for the shock shape, r 

and u. 

Those equations also contain five variables which are eventually al I functions 

which, however, are also functions of T 

lated by subroutines during the process of the solution. 

and ab. Al l  those five variables are calcu- b 

The system of equations also contains velocities, density, and pressure behind 

vsI p,, p,. They are al l  functions of free stream Mach number the shock, namely u 

M,, and shock wave angle u and degree of free stream dissociation a 1' They have to 

be calculated also by special subroutines during the process of the solution. 

5, 



35 

5 . 3  Numerical Calculation of the Parameters in the Flow Field 
Between Shock and Cy1 inder Surface 

5.3.1 Calculation of the Flow Along the Stagnation Streamline and the Stagnation 
Point Condition 

Before the numerical integration of the system of equations for the flow around 

the circular cylinder can be started, the stagnation point parameters, serving as init ial 

values, must be determined. For this purpose, the governing equations are specialized 

for the stagnation streamline, where 8 = 0 and w = u = 0. The equation for conti- 

nuity, r-momentum, rate equation, energy equation and equation of state constitute a 

system of five equations for the five unknowns p,  p, T, a, and v along the stagnation 

stream1 ine. After some el imination , the following set of three first-order ordinary 

differential equations i s  obtained: 

b s  

(5.15) 

(5.17) 

Equations (5.86) 0nd (5.37) s t i l l  contain the unknown gradient of u in 8 - 
direction, which for fixed 8 = 0 i s  a function ot rne radio: c ~ ~ r d ~ ~ c k  r d y -  

order to determine this gradient, use i s  made of the linear approximation for pu, which 

was previously needed in order to derive eq. (5.9). After considerable calculation, 

described in  detail in Ref. 28, one finally obtains the expression 

In 

(5.18) 

Hence, we now have 0 system (5.15) through (5.17) together with the energy equation, 

the equation of state and equation (5.18). The system of six equations can be solved 

for any particular chosen value for e the stagnation point shock detachment distance. 
0' 
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For the solution, a stagnation point pressure pb must be assumed as a first trial , then 

the system i s  integrated and iterated on pb, until the assumed value Pb agrees with that 

resulting from the integration, 

For both the integration along the stagnation streamline and for the integration 

along the body surface (described in Section 5.3.2 ), a fixed-step Runge-Kutta 

technique of fourth-order accuracy WQS used. 

stagnation streamline from the shock to the stagnation point. All calculations were per- 

formed on a UNIVAC 1107 high speed digital computer, which i s  located in the Univer- 

sity of Alabama Research Institute. 

One thousand steps were chosen for the 

5.3.2 Calculation of the Flow Variables Along the Cylinder Surface and Behind the Shock 

After the stagnation point conditions have been obtained, as described in 

Section 5.3.1 , the integration around the body i s  started wi th  an unknown, but assumed 

shock detachment distance e which must be iterated. The integration i s  done by the 

same technique and on the same computes as described in Section 5.3.1. The step size 

was fixed at 0.002 radians,and approximately 800 steps were used for the integration 

from the stagnation point to the equator (0 = 7r/2). The equations for the variables 

along the cylinder surface are strongly dependent on the selected value e 

transitions of all variables from the subsonic bo the supersonic flow regime are only 

obtained for a correctly chosen E e Depending on the case, between ten and fifteen 

iterations were needed to determine e Near the point 

where the surtace veioc.;;y ;ZZC!?PC the local speed of sound, the equations have a 

singularity. For the cases of frozen and equilibrium flow, the singularity occurs a i  iile 

sonic point; however, this i s  not true for non-equilibrium flow (Ref. 25). Previous 

investigators (Ref. 21, 25, 27) have reported that the singularity i s  of the saddle point 

type. 

research in this direction seems to be necessary, 

0, 

and smooth 
0, 

0 

to four significant figures. 
0 

In the present formulation of the problem, this was not apparent, and more 

Once a smooth distribution of al l  variables in the entire subsonic region was 

obtained, all dependent variables were extrapolated into the supersonic region by using 

Q second -order polynomial cwrve f i t .  The integration was then resumed and could, in 

most cases, be carried out to the equator of the boay, and in some cases even farther. 
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5.4 

5.4.1 

Discussion of the Results of the Flow Around a Cylinder 

Flow Along the Stagnation Streamline 

Numerical results have been obtained for a number of cases, only a few of 

which can be discussed here. For chemical non-equil ibrium flow, the degree of dissoci- 

ation and the temperature are particularly interesting parameters. Fig. 12 and 13 show 

the distribution of a and T along the stagnation streamline behind the bow shock for a 

fl ight speed of 4300 m/sec at an altitude of 30 km. Note that with TI = 225O K, the 

temperature scale goes from 4508OK to 765Q'K. That means the non-equiiibrium 

temperature existing behind the shock for small bodies i s  about 300Q'K higher than the 

equilibrium temperature existing for large bodies. 

the size of the body, quite different regimes QF non-equilibrium flow are encountered. 

For relatively large bodies, a Characteristic flow time i s  large compared to the local 

chemical re l~xat ion time, which causes the flow to reach the state of thermodynamic 

equilibrium close behind the shock. 

characteristic flow time i s  very short i f  cornpared to the relaxation t ime. 

the flow remains essentially frozen and equilibrates only near the stagnation point, 

where the velocity approaches zero and the local residence time of a flow particle again 

i s  large compared to the relaxation time, 

thermodynamic equilibrium at the stagnation point. 

It can be seen that, depending on 

Qn the other hand, for very small bodies, a 

In this case, 

It was found that the flow always reaches 

Bn both figures the present results from the integral method are compared with 

data calculated by Conti (Kef. %j, w l i v  ;;;d cz? Inverse method, also a basically 

different approach, and somewhat different reaction rate constants. The air model was 

the same 0 s  ours. The comparison I s  very gratifying. 

5.4.2 Flow Around Circular Cy1 inder 

It i s  already well known from perfect gas calculations t h ~ t  with increasing free 

stream Mach numbers the bow shock moves closer to the body. It i s  seen from Fig. 14 

and 15 that in chemical non-equilibrium flow this trend i s  retained. Both figures also 

indicate clearly that dissociation of the free stream, keeping al l  other free stream 

parameters unchanged, causes the bow shock to move away from the body. One reason 

for this ei ieci lj that, fcx n dissociated free stream, the density behind the shock i s  

lower than for corresponding conditions without free stream dissociation (Ref. 29). 
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c 

The effect i s  seen bo increase with decrdesing free stream Mach number. Fig. 14 also 

shows that the shock shape deviates considerably from 0 concentric circle, even where 

the velocity in the shock layer i s s t i l l  subsonic. 

From Fig. 15 i t  i s  observed that the present calculations yield a stagnation 

shock detachment distance which i s  much smaller, even for an undissociated free stream, 

than the values obtained from perfect gas calculations (Ref. 21, 24). It should be noted 

that the calculations for perfect gas by Archer, who used a one-strip solution, agrees 

excellently with the one by Belotserkovskii, who used a three-strip solution. This indi- 

cates that for this type sf calculation, a one-strip solution yields very satisfactory 

accuracy. I t  i s  important to see that for a free stream Mach number of M = 3, where 1 
the bow shock does not yet cause appreciable molecular vibration in the shock layer, 

the present calculation furnishes ca value which i s  very close to the known perfect gas 

results. Responsible for the effect that shock detachment distance of the present calcu- 

lation yields smaller values than that for the perfect gas at Mach numbers approximately 

4 to 7, i s  that our calculations included the energy of molecular vibration. For Mach 

number 6.8, the present calculation, which includes dissociation, does not show any 

degree of dissociation i n  the flow field (Fig. 117). Hence, the difference between the 

present calculation and the perfect gas calculation must be the inclusion of the molecular 

vibration energy in our calculations. 

of the dissociationsn the shock detachment distance wi l l  become more and more pronounc- 

ed. Again, ii i s  y,~:IfyIzc; !n zee that for the high Mach number range (M = 14.2) our 1 
results agree closely with those of Conti (Ref. 30), which were obtained by an enrireiy 

different approach. It must be mentioned here that numerical results from our previous 

investigation (Ref. 3) as reported for one particular case (M = 14; a = 0.7) were found 

to be incorrect due to an error i n  the computer program. However, al I equations are 

correct as publ ished. 

Qf course beyond Mach number 7, the influence 

- 
1 

The velocity distribution along the surface of the cylinder as evident from 

Fig. 16 i s  almost linear up to the sonic point. A distinct effect of free stream dissocia- 

t ion can be seen. 

The degree of oxygen dissociation along the non-catalytic body surface i s  

pi.e;cnted In Fia. 17. For zero free stream dissociation, i t  i s  seen that at M = 6.6 1 Y 
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no dissociation occurs along the body. The degree of dissociation increases strongly 

with increasing Mach number and reaches about 0.95 at Mach number 14.2. Especially 

for the high Mach number cases, it is seen that the recombination process dominates in 

the subsonic regime as the flow expands around the body. The degree of dissociation 

decreases sPowOy until, i n  the supersonic regime, the locas residence time of a particle 

becomes so small compared to the relaxation time that the flow freezes. With lower free 

stream Mach numbers, this effect becomes less pronounced until, for the lowest case 

shown, no change in composition at all i s  observed. For Q better understanding, how- 

ever, the non-equilibrium results should be compared to those for equilibrium flow and 

frozen flow, which are not available at the present time. 

Finally, Fig. 18 and 19 show the temperature and the pressure distribution 

along the surface of the cylinder for selected free stream Mach numbers with and without 

dissociation of the free stream. As expected, free stream dissociation has a strong effect 

on the temperature but practically no effect on the pressure. Therefore, pressure distri- 

butions are presented only for zero free stream dissociation. Note that for M, = 6.6 the 

presence of free stream dissociation raises the stagnation temperature about 1000 K. 0 

5.5 Comparison with Flow Around a Sphere 

So far, a large number of data have been presented for the circular cylinder. 

There i s  no doubt that from an engineering point of view, the sphere or the spherically 

c q y d  cone &as a greater interest. However, only Q restricted number of data for the 

sphere are available for non-equilibrium flow, including ciissocioi;uti (Rzf. 25)- Ficure 

20 shows a comparison of the shock detachment distance between the cy1 inder and sphere 

with the results from the sphere taken from Ref. 25. Note that the Mach number i s  near- 

By identical; the altitude, however, i s  markedly different. Both are valid for zero free 

stream dissociation. 

body and has less than one half of the distance of the shock wave for the cylinder. 

Results with exact equal free stream conditions for both cases are not available at the 

present time. The fact that the shock wave of the sphere i s  much closer to the body 

than for the cylinder should be true also for identical free stream conditions. It i s  

known to be the case for supersonic flow of a perfect gas. 

sonic point i s  very sensitive to free sireaiii e o n d i t i n n ~ ~  thus one cannot compare sonic 

point locations of two bodies with different free stream conditions. 

It i s  seen that the shock wave for the sphere i s  much closer to the 

Note that the location of the 
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6 .  NON-EQUILIBRIUM FLOW AROUND A POINTED CONE WITHOUT AND 
WITH DISSQCIATION IN THE FREE STREAM 

6 .  I Review o f  Cone Flow Calculations for Real Gases 

Qver the past few years considerable effort has been devoted to the hypersonic 

blunt body problem using both inverse and direct calculation techniques (See Section 

5.). Comparatively less interest has been paid to the high temperature real gas flow 

p a s t  pointed bodies, which presently appears to be of growing interest. 

In order to solve the problem of supersonic flow past any body, the conditions 

behind the shock wave should be available for use as init ial  or boundary conditions, 

depending on whether the governing equations are solved by integrating from the 

assumed shock wave toward the unknown body (the inverse method), or from the known 

body towards the unknown shock (the direct method). 

The classical example of supersonic pointed body flow i s  flow past an infinite 

circular cone at zero angle of attack. The principle of conical supersonic flow, that 

a l l  parameters are constant on co-axial conical surfaces, WQS first conceived by A. 

Busemann in 11928, For supersonic perfect gas flow, the parameters then are independent 

o f  distance from the apex of  the cone, and depend only on the polar angle. 

the flow parameters are described by a system of ordinary, non-linear differential 

equations. Those differential equations, often referred to as the Taylor-Maccoll 

equations, cannoi be sirlvcd I:: C ! C S P ~  fnm. They were solved numerically first by 

Taylor and Maccoll. An extended machine solution was given by Kopal i n  1947, for a 

perfect gas and supersonic flow. Much later Melnik (Ref. 31) used Dorodnitsyn's method 

Hence, 

of  integral relations to casculate supersonic ana hypersonic flow o f  a perfect gas about 

e l  l iptical cones. 

Real gas effects were considered first by Feldman (Ref. 32) in 1957 for disso- 

ciated air  i n  equilibrium, however, with verysimpIifyingassumptions. Later Romig 

(Ref. 33, 34) gave a numerical integration o f  the Taylor-Maccoll equation for 

equilibrium flow of airp using tabulated thermodynamic data. Sedney and Gerber 

(Ref. 35) calculated vibrational non-equilibrium flow over a cone using the method o f  

char~cte:I:tics. Recently Capiaux and Washington (Ref. 36) treated non-equilibrium 

flow of  an "ideal dissociating gas" (so-called Lighthill's gas) past a wedge, not a cone, 
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also using the method of  chamcteristics. The first application of  Dorodnitsyn's integral 

method to the real gas flow pas t  pointed cones was given by South (Ref. 37). He 

considered vibrntionally relaxing flow ofapure diatomic gas, but did not consider 

dissociation. 

The application of the method of integral relations to the problem of hypersonic 

flow of  a i r  with non-equilibrium dissociation p a s t  u 1. .r,trtl cone was first presented, 

to our knowledge, by 4. Thoenes (Ref. 13) and in Section 6 we w i l l  closely follow his 

presentation. it can be shown that for a large range of velocities, altitudes, and cone 

angles, an appreciable degree of oxygen dissociation behind the attached shock i s  

found, but nitrogen dissociation need not be considered as long cas the boundary layer 

i s  disregarded. Hence, his investigation uses the same simplified air  model, consisting 

of the three components 0, 0 and N only, which was used i n  Sections 3, 4, and 5 .  2' 2 

6.2 Basic Equations for the Flow Around a Sharp Biconvex Twodimensional 
and a Pointed Axisymmetric Body 

We start from the basic equations of steady adiabatic flow, neglecting 

viscosity, heat conduction, and radiation i n  the same way as we did i n  Section 5.  

The equation of state and the energy equation are the same and are not repeated here. 

We transform the vector equation to an orthogonal curvilinear coordinate system with 

coordinates tangential and normal to the body surface. The equations are valid for 

alnne flow (with i =O) and axisymmetric flow (with i=l). 
system and shock geometry, of an arbitrary pointed body of revoiuiiurl. 

radius o f  curvature, R, i s  a function of x i  In the equation, the curvature itself, K(x), 

is used. We are restricting ourselves to symmetric flow, that i s  no angle of attack. 

The resulting equations are as follows: 

Fig. 21 shows the coordinate 

!'!:k h t  the 

Conservation of mass: 

The equation for the x-momentum, y-momentum, and rate equation are not written 

in  the usual form but transformed immediately to the "divergence form" which i s  required 

for the application of  the integral method. 
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x- momentum : 

a ax [(P + pu2)rj] 

+ puvr 1 K - j p  [- b - y s i n  e -1 ae 

t $ [(l + Ky)puvr 

= o 
d r  

ax ax 

y-momentum: 

r a t e  equation: 

(6.4) - a (puw J a  +-- [(I + Ky)pvaJ] - pr j F(P + Ky) I’ 0 
a x  a Y  

The boundary conditions are very similar to those outlined i n  Section 5.2.2 for the 

blunt body. In particular, the condition for flow tangency at the body surface i s  

given by: 

V b  = 0 (6.5) 

The assumption of frozen chemical composition across the shock and hence the con- 

ditions behind h e  shock are the same, as i n  5.22. We w i l l  later present one result 

on equilibrium calculation for cone flow. For this, of course, equilibrium condition 

across the shockwas taken as a boundary condition. 

There are also velocity relations across the shock, equivalent to those of  the 

blunt body, explained i n  Section 5.2.2. Also, Figure 21 indicates the relation be- 

b e e n  the shock coordinate y and shock wave angle CY as: 
S 

- -  - (1 .t Kys) tan (a - e )  dys 
d x  

Where: i n  general, (J and 8 are functions of x. 
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6.3 Application of the One-Strip Integral Method for the Flow Calculation 
Around A Pointed Cone 

We apply the method of integral relations as described by Qorodnitsyn (Ref. 

20) to the partial differential equations which were written i n  divergence form (6.1 , 
6.2, 4 . 3 ,  6.4). We use the method in  its simplest form with one-strip, which is 

equivalent to a first order or linear approximation of certain groups of the variables 

along the y coordinate. After considerable calculations the system of ordinary 

differential equations (6.7 thru 6.12) i s  obtained. They are valid along the shock 

and along the body surface. The subscript b refers to conditions at body surface, 

while the subscript s as in p p refers to the conditions behind the shock. 
us, VSI  S 

(6.7) 

x-momentum: i "b 2 i dpb i dpb + (Pbub 2 drb 
2pbubrb dx + 'b'b $x + ' b  dx - ps) $x 

y -momen tu m : 
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Rate: 

drS + j.p U Q  - =  
j das 

s s s d x  + p u r  - dus dp 9 + p a r j -  + usasrl dx s s s d x  s s s d x  

Energy : 

1 2  
hb + 5 ub = h = constant t (6.11) 

State: 

The fint three equations express conservation of mass and momenta independent o f  the 

gas model. The rate equation expresses the non-equilibrium aspects of  the flow under 

considemtion. T h i s  equation, together with the equation of energy and the equation 

o f  state pertain to the specific gas model being applied here. Together with the 

senmetric relation (6.6) these constitute seven equations for the seven unknowns: Ub, 

pb, pb, ?b, and ab, plus the shock parameters, u the shock angle, ana y IIIP 

distance of  the shock from the cone surface. 

rate constants enter in the source function F which i s  therefore a function o f  a, p, 

and T. The enthalpy h i s  also a function of  a and T. 

.I . 

S 
The dissociation and recombination 

The parameters behind the shock (with subscript s) have not been determined 

They must be calculated for each point along the shock, assuming either frozen yet. 

or equilibrium composition downstream of the shock. 

6.3.1 Frozen Flow Around a Cone 

We are considering from now on flow around a cone. Hence we have to 

specialize a l l  equations above for i = 1 and K = 0. For a perfect gas, the observation 
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of stmight shock waves and constant surface pressure in the conical flow f ield con- 

f i n s  the original concept o f  conical flow, that there i s  no length scale. 

A frozen flow behaves l ike a perfect gas flow, only with a different 

chemical composition and therefore a different ratio of  specific heats, y. South (37) has 

used these facts of a straight shock wave and constant properties along the cone 

surface and shock surface to simplify the first approximation equations derived above. 

By the same procedure, i t  was found that,although the rate equation (6.10) i s  meaning- 

less, equations 6.7 through 6.9 reduce to simple algebraic equations QS follows. 

Continuity: 
pbub + p g v S  [cot (U - e)  + cot e l  = 8 (6.13) 

x- mome n t u m :  

2 
b b  2p u + 2 [ ~ 0 t  (U - e )  + cot e l  P , U , V ~  + (Pb - P,) = 0 (6.14) 

y- momen t um : 

2 
2 [cot e + cob: (U - e ) ]  pSvQ 

- [cot e + 2 cot  (U - e l l  (p, - P,) = 0 (6.15) 

Elimination o f  (p 

equation, furnishes 

- p ) from the last two equations, and using the continuity b s  

and subsequently a l l  the other variables on the body surface in terms o f  the values 

behind the shock. Equations 6.13, to 6.15, together with the eneQy equation (6. II) 

and the equation of  state (6.12), then represent five equations for the five unknowns 

Ub, pb, Tb, pb, and 4 e $ecifying a and cone angle 8, we can calcu- 

late chemically frozen cone flow w i th  the molecular vibrations either frozen, or i n  

equilibrium with the translational and rotational energy. By assuming al=O and a 

low free stream temperature, and by considering the molecular vibration frozen at 

the free stream valuerall the parameters obtained were in very good agreement with 

the well  known perfect gas resuiis ( T =  1.4). 

1 
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6.3.2 Eauilibrium Flow Around a Cone 

The same considerations as were pointed out above on frozen flow apply for 

the case of chemical equilibrium flow, i.e., there i s  also no length scale, and hence 

a l l  parameters must be constant along lines through the apex of the cone. 

Newman (Ref. 38) has used equations (6.13) through (6.16) i n  connection 

wih approximated thermodynamic data from tables to calculate conical flow 

parameters for air i n  thermodynamic equilibrium. Thoenes (Ref. 13) used the equ!Iib- 

riwm relation as 

the energy equation (6. Il), the equation of  state (6.12), and the equilibrium equation 

presented i n  equation (3.19). Equations (6.13) through (6. IS), 

(3.19) then constitute a system of six equations for the unknowns 'b' pb' TbtPb/ 

ab and u a The specification of the cone angle 8 

of the problem. 

allows the complete solution 

The actual numerical computation proceeds in a similar fashion as 

for the frozen flow. 

6.3.3 The General Case of Non-Equi librium Flow Around a Cone 

In the case o f  non-equilibrium flow past a cone, no definite statement can 

be made about the shock shape or the behavior o f  other flow parametes. As was 

shown in Section 2. I., any non-equilibrium flow w i l l  be non-similar. Hence we 

cannot expect the flow field to be conical in the sense that the parameters are 

corisiul;: G ! X ~  !Inez fhrouqh the apex, or that the shock is a straight cone. A l l  

variables must be calculated by integrating the conservation equations, togeihar 

with the equation o f  state, in a step-by-step fashion along the length of  the cone. 

For a supersonic flow field, which i s  considered here, the equations are of 

hyperboa i c  character and thus form an init ial  value problem. 

given by the frozen flow solution, and also the init ial  gradients can be derived as 

functions of  the init ial  flow parameters only. 

Init ial values are 

The author used a method he referred to as "the semi-exact procedure", 

using the x-mornenturn equation (6.2), the rate eqwation (6.4) in their exact form, 

and in addition the continuity equation (6.7) and the y-momentum equation (6.9) in 

their approximate form. Hence, this set contains only two approximated equations 

i n  contrast to the ordinary stadard procedure of the iniegrG! m e t h d i  where a l l  four 
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equations are approximated. Que to the boundary condition, eq. (6.5), i t  can be 

seen from eq. (6.2) and (6.4) prior bo their being written in the divergence form, that 

they may be used in their exact forms, leaving, as mentioned, only the continuity 

(6.7) and the y-momentum eq. (6.9) as approximations. 

Consequently, the following set of equations i s  obtained from the eq. (6.7), 

(6.2), (6.9), (6.4), (6.1 l), (6. ?2), respectively. 

Continuity : 

dYS 2 
ps vs bs < " s s s  u r  - p u r )  b b b  dx-c 

1 

x-momentum: 

= o  b dpb 
PbUb dx dx 

du 
+ -  

(6.17) 

(6.18) 

y-momentum: 

dU d V  dr 

s s s  dx s s s  dx s s s  dx s s s d x  
u v s - + p v s  dpS - S + p u s  - - + p u v  S - s -  - 

Rate : 

dab 
'b dx =Fb 

Energy: 

= ht 1 2  
hb + T "b 

(6.20) 

(6.21) 

State : 

Pb = Pb RZb Tb (6.22) 

Those are 6 equations for the 6 unknowns u b/  pb/ Tb/ pb/ ab along the body 
surface a d  ys, t h , ~  h c k w a v e  distance from the cone surface as explained before. 

hb and F are known functions of p, T, a. The cone angle 8 must be given. b 
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In order to start the numerical integmtion of  system (6.17) through (6.22), 

the initial values and the init ial  derivatives o f  a l l  parameten must be known a t  the 

cone tip, x =  0 . The use o f  frozen shock conditions implies that the flow i s  frozen 

a t  the tip o f  the sone; therefore, the frozen flow values serve as init ial  values. 

When trying to solve for the derivatives however, indeterminate values occur at 

x = 0. The derivatives are successfully obtained by applying L'Hospital's rule. 

6.4 Presentation of  the Resu I t s  

6.4.1 Numerical Techniaue 

For the numerical evaluation and presentation, a l l  variables and coordi- 

nates were made dimensionless as follows. The velocity components, pressure, 

density, and temperature were made dimensionless by the free steam velocity, 

free steam momentum flow 

respectively. The coordinates x and )I were made dimensionless by a 

characteristic length I defined b y  

2 
1 1  (p u ), free stream density, and free stream temperature, 

U. 
b I = ( -  Fb 1 -  X - 0  (6.23) 

Mere the reciprocal value o f  Fb represents Q characteristic relaxation time. For the 

cases presented, i t  i s  on the order of 4 -10 
-3 

sec. 

The equations were rhen ~ K G ~ Z E X ~ C !  dimensionless form. A l l  calcula- 

tions were performed on the UNlVAC 1107 computer located at  the University of  

Alabama Research Bnstitute. 

For frozen flow and equilibrium flow, the procedure i s  rather straight 

forward. For chemical non-equilibrium flow, basically a fixed step Runge-Kutta 

integration technique of fourbh-order accuracy was used. The main program uses 

essentially four subroutines; one for evaluating the thermodynamic functions, one 

for the coefficientsof the set of equations, one for solving the system of linear 

equations for the derivatives, and the Runge-Kutta technique for the integration. 
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6.4.2 Frozen Flow Results 

The calculation of the frozen flow was necessary not only in order to 

obtain initial conditions for the case o f  chemical non-equilibrium flow, but also for 

use as an easy check o f  the system by calculation of cases at relatively low tempera- 

tures. The results, not illustmted here, show that the shock wave angle, surface 

velocity, and surface pressure respectively, obtained with the one-strip integral 

method for undissociated, fully frozen flow of air, am i n  ful l  agreement with the 

exact results of the perfect gas, as it should be. Apparently, for hypersonic conical 

flow, where the shock w w e  attaches closely to the cone i n  the shock layer, the flow 

variables undergo only slight changes in  the direction normal to the body surface; and 

therefore, the one-strip (linear) approximation i s  quite adequate. 

The influence of  free stream dissociation on the angular shock layer thickness 

for chemically frozen flow i s  shown i n  Fig. 22. It indicates that the thickness increases 

with increasing free stream dissociation. Repeating the calculation with vibrational 

equilibrium, instead o f  the frozen vibration, results i n  0 smaller shock angle, 

particularly at  higher free stream velocities and larger cone angles (not shown here). 

Free stream dissociation increases the surface pressure, and for complete free stream 

oxygen dissociation and a semivertex angle of  8 

increase amounts to about 11%. Under the same conditions, the surface density 

decreases about 10%. Frozen dissociation has l i t t le influence on the surface tempera- 

ture (not shown in  the presented graphsj. 

= 10" at Mach number 5, this 

6.4.3 Equilibrium Flow Results 

Conical flow parameters for thermodynamic equilibrium have been calculated 

by Thoenes (Ref. 13) i n  order to demonstrate the validity of  the simplified three 

component a i r  model for the range of cone angles and free stream conditions which 

were considered. Also, i n  order to judge the results of the non-equilibrium flow 

calculations, consistent asymptotic equilibrium values are needed. They have been 

compared with, what may be called exact, results by Romig (Ref. 34), which were 

calculated using Taylor-Maccol 1's equations i n  connection with thermodynamic tables. 

I t  Is =!her gratifying . -  to see that the velocity, the pressure, and the temperature on 

the cone surface are practically identical with the exact values. i h e  shock wove 
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angle and compressibility factor are somewhat higher, the surface density somewhat 

lower than the exact value. However, the deviation in no case exceeds 2%. Hence, 

for this investigation, the assumed gas model i s  shown to bea very good approximation 

to atmospheric air. Because of this consistent agreement, no detailed figures with 

equilibrium results are shown here (except Fig. 26). 

6.4.4 Nan-Equilibrium Fiow Results 

Some results for chemical non-equilibrium flow are presented in Figs. 23 thru 

26. The case given in  these figures for zero free stream dissociation corresponds to a 

flight Mach number of M 1 
discussed, the free stream dissociation was arbitrarily taken to be a 

al l  other free stream conditions unchanged. Al l  variables in figures 23 thru 26 are 

plotted versus the dimensionless distance along the cone surface 

equilibrium values indicated in al I figures represent the results from the equilibrium 

flow calculations, (Section 6.7.3) which are based on the assumption of 0 conical 

shock wave. I t  i s  0lso noted that free stream dissociation affects finite rate non- 

equilibrium flow. It should be mentioned that the free stream dissociation and the 

resulting higher degree of dissociation in the shock layer causes the flow to relax 

faster, j .e. 

case of zero free stream dissociariorl. 

= 20 at 43 km geometric altitude. For the second case 

= 0.5, leaving 
1 

The asymptotic 

the respective equilibrium state i s  reached closer to the t ip than in the 

The shock wave angle (not shown here) starts first with the frozen value, then 

decreases, and then afterwards increases a 1 i t t ie. 

within 0.1 or 0.2 degrees, Surface velocity approaches the asymptotic equilibrium 

value very closely (within 0.7%). The surface piessure (Fig. 23) i s  clearly the variable 

which i s  the !east sensitive to relaxation effects. After a slight overexpansion, the 

asymptotic equilibrium values are approached within less than 0.1%. Note that a l l  

pressure changes are very small. The surface density (Fig. 24) i s  seen to increase 

0long the body, and i t  approaches the asymptotic equilibrium value from below. The 

free stream dissociation reduces the density marked1 y. The surface temperature also 

plotted in Figure 24, decrences rapidly away from the tip, Free stream dissociation 

results in higher temperature. This behavior is, of course, closely related to that of 

However, al l  those changes are 
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the degree of dissociation, a , which i s  shown in  Fig. 25. The graph illustrates the use- 

ful ness of the x-coordinate made dimensionless with the characteristic relaxation 

length I. After 

dissociation i s  approximately in equilibrium (horizontal slope). For the case with free 

stream dissociation a = 0.5 the value i s  already reached at 6 = 0.5. I t  can be seen 

that the init ial gradient of the a versus 6 curve at 5 = 0 would reach Q = 1 at 6 = 1 

as it should according to the definition of 6 ,  using I. 

comparison between the shock layer thickness for non-equil ibrium flow compared with 

the two-limits of a frozen and equilibrium flow. The fact that the much more complex 

calculation of the non-equilibrium flow produces a shock which i s  clearly bracketed by 

the frozen value, from which i t  starts, and the equilibrium value i s  very gratifying. It 

i s  noted that the shock wave angle slowly approaches the angle for equilibrium flow. 

= 2 or 3 for the case of zero free stream dissociation, the flow field 

I 

Fig. 26 f inally brings the 

Conduding the discussion of the results, we can state that the free stream 

dissociation and chemical relaxation in the shock layer have a significant influence 

on the behavior of most flow variables. Free stream dissociation i s  known to occur in 

high temperature gasdynamic flow facilities; and i t  is, therefore, important to recognize 

its effects when evaluating experiments performed in such facilities. 
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7. SUMMARY 

The salient features of theoretical hypersonic flow research, including the underlying 

thermodynamic relations, carried out by the author and his co-workers over the past four 

years, and some numerical results obtained are reported. 

The meaning of equilibrium, non-equilibrium, and frozen flow are discussed. Non- 

equilibrium flow fields generally are not similar for geometrically similar bodies. The flight 

regions and the equilibrium values of temperature, pressure, and density, which occur behind 

the normal shock of a vehicle re-entering the earth's atmosphere from a circular orbit or from 

a lunar mission, are presented. 

Real gas effects are treated using a simplified air model. The pressure equilibrium 

constants for oxygen and nitrogen dissociation are derived, and explicit equations for the 

degree of oxygen and nitrogen dissociation i n  equilibrium are given. The thermal equation 

of state, the thermodynamic properties of energy and enthalpy, and the rate equation for 

the net production of oxygen atoms are derived in some detail. 

A simp1 if ied gas model valid in the range of oxygen dissociation i s  used to numeri- 

cal ly calculate the inviscid flow through hypersonic nozzles, and, by the direct one-strip 

integral method of Dorodnitsyn, the inviscid flow about the forward portions of blunt 

bodies (up to the equator), and of pointed cones. Cases of equilibrium, non-equilibrium, 

and frozen flow, with and without free stream dissociation, are presented. The effects of 

the absolute size of a blunt body and the absolute length of a cone are investigated. 

Some specific results perrainiriy :r t=!zn+ hndy (nose radius = 10 cm) flying at 30 km 

altitude are : 

(1 )  Real gas effects can be detected beginning at M = 3 due to molecular vibration, 

and beyond M = 8 due to molecular vibration and dissociation. Dissociation of oxygen only 

occurs in the range between Mach numbers 8 and 14, approximately, while, at higher Mach 

numbers, nitrogen dissociation must be considered. 

case of a real gas wi th  an undissociated free stream i s  much smaller than in case of a 

perfect gas. 

(4) For very small bodies (nose radius < 0.1 cm), and at M = 14, the non-equilibrium tempera- 

ture i n  the main part of the shock layer near the stagnation streamline i s  about 3000°K higher 

than the equi!;brium temperature which exists for a sufficiently large body(nose radius = 10 cm). 

(2) The shock detachment distance in 

(3) Free stream dissociation causes the bow shock to move away from the body. 
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Some results pertaining to a circular cone with attached shock are: 

(1) For a large range of Mach numbers (up to M = 20) and cone semivertex angles 

(up to 8 = 40°) at 40 km altitude, an appreciable degree of oxygen dissociation i s  found 

in the flow f ield between shock and body, but nitrogen dissociation can be disregarded. 

(2) For non-equil ibrium flow, free stream dissociation markedly decreases the density along 

the body, results i n  substantially higher temperature, slightly increases the shock angle, 

and has l i t t le  effect on surface pressure. The equilibrium flow results for o cone agree 

within 2% with the values given by Romig. 

of the cone i s  curved and i s  bracketed by the location of the frozen shock wave on the 

outside, and by the position of the equilibrium shock wave which is closer to the body. 

(3) For non-equilibrium flow, the shock wave 
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LIST OF SYMBOLS 

Area, Throat Area 

Constant, defined by Eq. (3.3) 

Number of oxygen atoms per unit mass of gas 

Dissociation energy 

Characteristic temperature of dissociation [ OK ] 

Internal energy [ J/kg ] or [ J/kmol ] 

Activation energy of dissociation [ J/kmol ] 

Mole fractions 

Source function for oxygen atoms. Eq. (5.5) 

Degeneracy factor 

Enthalpy [ J/kg 1 ,  also Planck's constant [ J sec 1 
Total enthalpy [ J/kg ] 

Moment of Inertia 

Coordinate designator 

Bol tzmann's constant 

Jfimol 1 and [ J/kg ] , respectively 

3 Dissociation rate constant [ m /particle sec 1 
Recombination rate constant [ m /particle* . sec I 
Curvaiul e 

Concentration equilibrium constant [ particles/mJ ] 

Pressure equilibrium constant [ N/m 1 
characteristic length [ m 1 
M a s s  flow [ kg/sec I 
Mass of one particle of ith species 

Molecular weight of undissociated gas, also Mach number 

Molecular weight of dissociated gas 

Molecular weight of ith species 

Number of particles of ith species per unit volume (undissociated gas) 

Number of particles of ith species per unit volume (dissociated gas) 

Nitrogen 

6 

-. 
3 
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NA 
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R*  
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x, Y 
X 

z 
a 

P 
Y 

A 

e 

'7 

e 

Qr 

n 

v i  
P 
a 

Avogardro's number [ kmol-' ] 

Oxygen 
2 

Pressure [ N/m ] 

Partition function 

Heat addition [ J/kg ] 

Velocity vector 

Radial and angullas coordinates 

Gas constant of undissociated gas [ J/kg O K  ] 

Universal gas constant [ J/kmol O K  1 
Time [ sec ] 

Temperature [ OK 1 
Velocity components in x, y direction, respectively [ m/sec ] 

Net rate of production of oxygen atoms per unit volume of gas 

C o a d  in ates 

Distance along axis downstream from nozzle throat 

Compressibility factor 

Degree of oxygen dissociation 

Degree of nitrogen dissociation 

Ratio ot specific i~eu:s 

Local shockwave detachment distance [ m J 
Dimensionless shockwave distance from body 

Dimension I ess rad ial coord inate, r/rb 

Characteristic vibrational temperature 1 O K  I ,  and body contour 
angle 

Characteristic rotational temperature [ O K  ] 

Symmetry Number 

Stoichiometric coefficient for ith species 

Density I kg/m3 1 
Oblique shock angle 
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Subscripts 

1 

b 

S 

n 

t 

M 

Ni2 

N 

8 2  

0 

a 

P 
0 

Free stream 

Body surface 

Behind the shock 

Normal component 

Tangential component, also total conditions 

T h ird-bod y part icl e 

Molecular nitrogen 

Atomic nitrogen 

Mol ecu I ar oxygen 

Atomic oxygen 

Pertaining to oxygen dissociation 

Pertaining to nitrogen dissociation 

Standard conditions 
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FIG. 3 .  FLIGHT REGION OF MANNED RE-ENTRY VEHICLES FROM CIRCULAR ORBIT 
AND LUNAR RETURN. ALSO EQUILIBRIUM CONDITIONS BEHIND A NORMAL SHOCK. 
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TEMPERATURE AND PRESSURE, CALCULATED FOR SIMPLIFIED AIR-MOML IN EQUILIBRIUM. 
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